TCEQ Interoffice Memorandum **To:** Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Air Section Manager, TCEQ Region 4, Dallas/Fort Worth From: Shannon Ethridge, M.S. S.E. Toxicology Division, Chief Engineer's Office **Date:** June 16, 2011 **Subject:** Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected at Latitude 33.22032, Longitude -97.16211, Downwind of the Range Production - Rayzor Unit in Denton, Denton County, Texas Sample Collected on March 24, 2011, ACL 110398 (Lab Sample 110398-0001) # **Key Points** • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. # **Background** On March 24, 2011, a Texas Commission on Environmental Quality (TCEQ) Region 4 Air Investigator collected a 30-minute canister sample (Lab Sample 110398-0001) downwind of the Range Production - Rayzor Unit in Denton, Denton County, Texas (Latitude 33.22032, Longitude -97.16211). The sample was collected in response to a citizen complaint of a very strong chemical odor. The investigator reported a light, intermittent odor of brinish water during the sampling event. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 67.5°F with a relative humidity of 32.4%, and winds were from the northeast (40°) at 1.8 miles per hour. The sampling site was less than 100 feet from the possible source and/or the facility. The nearest location where the public could have access was approximately 300 to 500 feet from the possible source and/or the facility. The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in this review are provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppb_v) (Attachment B and Table 1). Please note that the available canister technology and analysis method can not capture and/or analyze for all chemicals. Tony Walker et al. June 16, 2011 Page 2 of 13 #### **Results and Evaluation** Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported to occur in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors. Please call me at (512) 239-1822 if you have any questions regarding this evaluation. Tony Walker et al. June 16, 2011 Page 3 of 13 #### Attachment A ## **List of Target Analytes for Canister Samples** ethane ethylene acetylene propane propylene dichlorodifluoromethane methyl chloride isobutane vinyl chloride 1-butene 1.3-butadiene n-butane t-2-butene bromomethane c-2-butene 3-methyl-1-butene isopentane trichlorofluoromethane 1-pentene n-pentane isoprene t-2-pentene 1,1-dichloroethylene c-2-pentene methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene 1.1-dichloroethane cyclopentane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2-methyl-1-pentene + 1-hexene n-hexane chloroform t-2-hexene c-2-hexene 1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane benzene carbon tetrachloride cyclohexane 2-methylhexane 2,3-dimethylpentane 3-methylhexane 1,2-dichloropropane trichloroethylene 2,2,4-trimethylpentane 2-chloropentane n-heptane c-1,3-dichloropropylene methylcyclohexane t-1,3-dichloropropylene 1.1.2-trichloroethane 2,3,4-trimethylpentane toluene 2-methylheptane 3-methylheptane 1.2-dibromoethane n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene 1,1,2,2-tetrachloroethane o-xylene n-nonane isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene 1,3,5-trimethylbenzene o-ethyltoluene 1,2,4-trimethylbenzene n-decane 1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. June 16, 2011 Page 4 of 13 #### Attachment B 4/12/2011 #### Texas Commission on Environmental Quality Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716 #### Laboratory Analysis Results ACL Number: 110398 ACL Lead: Karen Bachtel Region: T04 Date Received: 3/30/2011 Project(s): Barnett Shale | Facility(ies) Sampled | City | County | Facility Type | |-----------------------------|--------|--------|---------------| | Range Resources Corporation | Denton | Denton | | #### Laboratory Procedure(s) Performed: Analysis: AMOR006 Determination of VOC Canisters by GC/MS Using Modified Method TO-15 Prior to analysis, subatmospheric samples are pressurized to twice the collected volume using a sample dilution system. For analysis, a known volume of a sample is directed from the canister into a multitrap cryogenic concentrator. Internal standards are added to the sample stream prior to the trap. The concentrated sample is thermally desorbed and carried onto a GC column for separation. The analytical strategy involves using a GC with dual columns that are coupled to a mass selective detector (MSD) and a flame ionization detector (FID). Mass spectra for individual peaks in the total ion chromatogram are then used for target compound identification and quantitation. The fragmentation pattern is compared with stored spectra taken under similar conditions in order to identify the compound. For any given compound, the intensity of the quantitation fragment is compared with the system response to the fragment for known amounts of the compound. This establishes the compound concentration in the sample. For non-target compound peaks which are at least one-half the height of the internal standard, a library search is performed in an attempt to identify the compound solely upon fracture patterns. These tentatively identified compounds (TIC's) are reported as a sample specific footnote. Accurate quantitation of TICs is not possible. The FID is used for the quantitation of ethane, ethylene, acetylene, propylene and propane and identification is based on matching retention times of standards containing known analytes. #### Sample(s) Received Field ID Number: 20456 Laboratory Sample Number: 110398-0001 Sampled by: Jessica Mock Sampling Site: Rayzor Facility Date & Time Sampled: 03/24/11 11:17:00 Valid Sample: Yes Comments: Canister 20456 was used to collect a 30-minute sample using CO-28. Please note that this analytical technique is not capable of measuring all compounds which might have adverse health effects. For questions on the analytical procedures please contact the laboratory manager at (512) 239-4894. For an update on the health effects evaluation of these data, please contact the Toxicology Division at (512) 239-1795. Analyst: Reviewed By: David Manis Technical Specialist: Texas Commission on Environmental Quality ## Laboratory Analysis Results ACL Number: 110398 Analysis Code: AMOR006 | Note: Results are reported in units of pa | | ume (ppbv) | | | | | | |---|--------|---------------|----------|-----------------|---------------|-------|---------| | Lab ID | | | 398-0001 | | | | | | Field ID | | | | | | | | | | | 20456 | | | | | | | Canister ID | | <u> </u> | 20456 | | | | | | Analysis Date | 100 | | 4/01/11 | T 71 44 | | T one | 71 44 | | Compound | LOD | Concentration | SDL | Flags** | Concentration | SDL | Flags** | | ethane | 0.50 | 190 | 1.0 | D1,T | | | | | ethylene | 0.50 | 1.3 | 1.0 | L,D1,T | ***** | | | | acetylene | 0.50 | 0.62 | 1.0 | J,D1,T | | - | | | propané | 0.50 | 51 | 1.0 | D1,T | | - | | | propylene | 0.50 | 0.72 | 1.0 | J,DI,T | | | | | dichlorodifluoromethane | 0.20 | 0.63 | 0.40 | . LD1 | | - | | | methyl chloride | 0.20 | 0.72 | 0.40 | L,D1 | | - | | | sobutane | 0.23 | 12 | 0.46 | D1 | | | - | | vinyl chloride | 0.17 | ND | 0.34 | DI | | | | | 1-butene | 0.20 | 0.38 | 0.40 | J,D1 | | _ | | | 1,3-butadienė | 0.27 | ND | 0.54 | D1 | | | | | n-butane | 0.20 | 15 | 0.40 | Dl | | | | | -2-butene | 0.18 | ND | 0.36 | D1 | | | | | bromomethane | 0.27 | ND | 0.54 | D1 | | | | | :-2-butene | 0.27 | ND | 0.54 | DI | | | | | 3-methyl-1-butene | 0.23 | ND · | 0.46 | Di | | | | | sopentane | 0.27 | 4.7 | 0.54 | DI | | | | | richiorofluoromethane | 0.29 | 0.29 | 0.58 | J,D1 | | | | | -pentene - | 0.27 | ND | 0.54 | D1 | | | | | -pentane | 0.27 | 3.8 | 0.54 | D1 | | | | | soprene | 0.27 | ¹ ND | 0.54 | D1 | | | | | -2-pentene | 0.27 | ND | 0.54 | D1 | | | | | ,1-dichloroethylene | 0.18 | ND | 0.36 | D1 | | | | | 2-2-pentene | 0.25 | ND | 0.50 | Dl | | | | | nethylene chloride | 0.14 | 0.16 | 0.28 | J,D1 | | | | | 2-methyl-2-butene | , 0.23 | ND | 0.46 | D1 - | | | | | 2,2-dimethylbutane | 0.21 | 0.19 | 0.42 | J,D1 | | | | | cyclopentene | 0.20 | ND . | 0.40 | D1 | | | | | i-methyl-1-pentene | 0.22 | ND | 0.44 | DI | | | | | ,1-dichloroethane | 0.19 | ND | 0.38 | DI | | | | | cyclopentane | 0.27 | ND | 0.54 | D1 | | | | | 2,3-dimethylbutane | 0.28 | 0.15 | 0.56 | J,D1 | | | | | 2-methylpentane | 0.27 | 1.4 | 0.54 | D1 | | | | | -methylpentane | 0.23 | 0.99 | 0.46 | L,D1 | | | | | -methyl-1-pentene + 1-hexene | 0.20 | 0.06 | 0.40 | J,D1 | | | | | i-hexane | 0.20 | 2.3 | 0.40 | D1 | | | | | hieroform | 0.21 | ND | 0.42 | D1 | | | | | -2-hexene | 0.27 | ND | 0.54 | D1 | | | | | -2-hexene | 0.27 | . ND | 0.54 | D1 | | | | | ,2-dichloroethane | 0.27 | ND . | 0.54 | DI . | | | - | | nethyloyolopentane | 0.27 | 0.32 | 0.54 | J,D1 | | | | | 4-dimethylpentane | 0.27 | ND | 0.54 | Dl | | | | | ,1,1-trichloroethane | 0.26 | ND | 0.52 | Dì | | | | | enzene | 0.27 | 0.49 | 0.54 | J,D1 | | | | | arbon tetrachloride | 0.27 | 0.08 | 0.54 | J,D1 | | | | | yclohexane | 0.24 | 0.81 | 0.48 | L,DI | | | | | -methylhexane | 0.27 | 0.81 | 0.54 | L _{D1} | | | | | ,3-dimethylpentane | 0.26 | 0.13 | 0.52 | J,D1 | | | | # Laboratory Analysis Results ACL Number: 110398 Analysis Code: AMOR006 | Lab ID | | 110398-0001 | | | | | | |---------------------------|--------|---------------|------|---------|---------------|-----|---------| | Compound | LOD | Concentration | SDL | Fiags** | Concentration | SDL | Flags** | | 3-methylhexane | 0.20 | 0.66 | 0.40 | L,DI | | | | | 1,2-dichloropropane | 0.17 | ND | 0.34 | D1 | | | | | trichloroethylene | 0.29 | ND | 0.58 | D1 | | | | | 2,2,4-trimethylpentane | 0.24 | ND | 0.48 | DI | | | | | 2-chloropentane | 0.27 | ND | 0.54 | D1 | | | | | n-heptane | 0.25 | 1.2 | 0.50 | L,D1 | | | | | c-1,3-dichloropropylene | 0.20 | ND | 0.40 | D1 | | | | | methylcyclohexane | 0.26 | 1.0 | 0.52 | L,D1 | | | | | t-1,3-dichloropropylene | 0.20 | ND | 0.40 | . D1 | | | | | 1,1,2-trichloroethane | 0.21 | ND | 0.42 | Dl | | | | | 2,3,4-trimethylpentane | 0.24 | ND | 0.48 | D1 | | | | | toluene | 0.27 | 0.51 | 0.54 | J,D1 | | | | | 2-methyliheptane | 0.20 | 0.39 | 0.40 | J,D1 | | | | | 3-methylheptane | 0.23 | 0.26 | 0.46 | J,D1 | | | | | ,2-dibromoethane | 0.20 | ND | 0.40 | DI | | | | | 1-octane | 0.19 | 0.52 | 0.38 | L,D1 | | | | | etrachloroethylene | - 0.24 | 0.22 | 0.48 | J,D1 | | | | | chlorobenzene | 0.27 | ND | 0.54 | D1 | | | | | sthylbenzene | 0.27 | 0.05 | 0.54 | J,DI | | | | | n & p-xylene | 0.27 | 0.29 | 0.54 | J,DI | _ | | | | ityrene | 0.27 | ND | 0.54 | D1 | | | | | 1,1,2,2-tetrachloroethane | 0.20 | ND | 0.40 | . D1 | | | | | o-xylene | 0.27 | ND | 0.54 | D1 | | | | | n-nonane | 0.22 | 0.25 | 0.44 | J,D1 | | | | | sopropylbenzene | 0.24 | ND | 0.48 | DI | | | | | o-propylbenzene | 0.27 | ND | 0.54 | DI : | | | | | n-ethyltoluene | 0.11 | ND · | 0.22 | D1 | | | | | o-ethyltoluene | 0.16 | ND | 0.32 | DI | | | | | ,3,5-trimethylbenzene | 0.25 | 0.01 | 0.50 | J,D1 | | | | | -ethyltoluene | 0.13 | ND | 0.26 | D1 | | | | | ,2,4-trimethylbenzene | 0.27 | ND | 0.54 | D1 | ., | | | | i-decane | 0.27 | ND | 0.54 | D1 | | | | | ,2,3-trimethylbenzene | 0.27 | ND | 0.54 | D1 | | | | | n-diethylbenzene | 0.27 | ND | 0.54 | D1 | | | | | -diethylbenzene | . 0.27 | ND | 0.54 | D1 | | | | | -undecane | 0.27 | ND | 0.54 | D1 | | | | Tony Walker et al. June 16, 2011 Page 7 of 13 ### Laboratory Analysis Results ACL Number: 110398 Analysis Code: AMOR006 ### Quality Control Notes: D1-sample concentration was calculated using a dilution factor of 4.02. TCEQ laboratory customer support may be reached at kbachtel@tceq.state.tx.us The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans With Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512) 239-0010, (Fax 512-239 -0055), or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, Texas 78711-3087. Tony Walker et al. June 16, 2011 Page 8 of 13 Table 1. Comparison of Monitored Concentrations in Lab Sample 110398-0001 to TCEQ Short-Term AMCVs | Lab Sample ID | 110398-0001 | | | | | | |-----------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | LOD
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 1,1,1-Trichloroethane | 380,000 | 1,700 | 0.26 | ND | D1 | 0.52 | | 1,1,2,2-Tetrachloroethane | 7,300 | 10 | 0.2 | ND | D1 | 0.4 | | 1,1,2-Trichloroethane | Not Available | 100 | 0.21 | ND | D1 | 0.42 | | 1,1-Dichloroethane | 110,000 | 1,000 | 0.19 | ND | D1 | 0.38 | | 1,1-Dichloroethylene | Not Available | 180 | 0.18 | ND | D1 | 0.36 | | 1,2,3-Trimethylbenzene | Not Available | 250 | 0.27 | ND | D1 | 0.54 | | 1,2,4-Trimethylbenzene | Not Available | 250 | 0.27 | ND | D1 | 0.54 | | 1,2-Dibromoethane | 10,000 | 0.5 | 0.2 | ND | D1 | 0.4 | | 1,2-Dichloroethane | 6,000 | 40 | 0.27 | ND | D1 | 0.54 | | 1,2-Dichloropropane | 250 | 100 | 0.17 | ND | D1 | 0.34 | | 1,3,5-Trimethylbenzene | Not Available | 250 | 0.25 | 0.01 | J,D1 | 0.5 | | 1,3-Butadiene | 230 | 1,700 | 0.27 | ND | D1 | 0.54 | | 1-Butene | 360 | 50,000 | 0.2 | 0.38 | J,D1 | 0.4 | | 1-Pentene | 100 | 2,600 | 0.27 | ND | D1 | 0.54 | | 2,2,4-Trimethylpentane | Not Available | 750 | 0.24 | ND | D1 | 0.48 | | 2,2-Dimethylbutane (Neohexane) | Not Available | 1,000 | 0.21 | 0.19 | J,D1 | 0.42 | | 2,3,4-Trimethylpentane | Not Available | 750 | 0.24 | ND | D1 | 0.48 | | 2,3-Dimethylbutane | Not Available | 990 | 0.28 | 0.15 | J,D1 | 0.56 | | 2,3-Dimethylpentane | Not Available | 850 | 0.26 | 0.13 | J,D1 | 0.52 | | 2,4-Dimethylpentane | 290,000 | 850 | 0.27 | ND | D1 | 0.54 | | 2-Chloropentane (as chloroethane) | Not Available | 190 | 0.27 | ND | D1 | 0.54 | | 2-Methyl-1-Pentene +1-Hexene | 20 | 500 | 0.2 | 0.06 | J,D1 | 0.4 | | 2-Methyl-2-Butene | 250 | 500 | 0.23 | ND | D1 | 0.46 | | Lab Sample ID | 110398-0001 | | | | | | |---------------------------------|----------------------------------|---|----------------------------|---------------------------------------|--------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | LOD
(ppb _v) | Concentrations
(ppb _v) | Flags | SDL
(ppb _v) | | 2-Methylheptane | Not Available | 750 | 0.2 | 0.39 | J,D1 | 0.4 | | 2-Methylhexane | Not Available | 750 | 0.27 | 0.81 | L,D1 | 0.54 | | 2-Methylpentane (Isohexane) | 83 | 1,000 | 0.27 | 1.4 | D1 | 0.54 | | 3-Methyl-1-Butene | 250 | 8,000 | 0.23 | ND | D1 | 0.46 | | 3-Methylheptane | Not Available | 750 | 0.23 | 0.26 | J,D1 | 0.46 | | 3-Methylhexane | Not Available | 750 | 0.2 | 0.66 | L,D1 | 0.4 | | 3-Methylpentane | Not Available | 1000 | 0.23 | 0.99 | L,D1 | 0.46 | | 4-Methyl-1-Pentene (as hexene) | 20 | 500 | 0.22 | ND | D1 | 0.44 | | Acetylene | 620000 | 25000 | 0.5 | 0.62 | J,D1,T | 1 | | Benzene | 2700 | 180 | 0.27 | 0.49 | J,D1 | 0.54 | | Bromomethane (methyl bromide) | 21000 | 30 | 0.27 | ND | D1 | 0.54 | | c-1,3-Dichloropropylene | Not Available | 10 | 0.2 | ND | D1 | 0.4 | | c-2-Butene | 2100 | 15000 | 0.27 | ND | D1 | 0.54 | | c-2-Hexene | Not Available | 500 | 0.27 | ND | D1 | 0.54 | | c-2-Pentene | Not Available | 2600 | 0.25 | ND | D1 | 0.5 | | Carbon Tetrachloride | 97000 | 20 | 0.27 | 0.08 | J,D1 | 0.54 | | Chlorobenzene (phenyl chloride) | 210 | 100 | 0.27 | ND | D1 | 0.54 | | Chloroform (trichloromethane) | 85,000 | 20 | 0.21 | ND | D1 | 0.42 | | Cyclohexane | 420 | 1,000 | 0.24 | 0.81 | L,D1 | 0.48 | | Cyclopentane | Not Available | 1,200 | 0.27 | ND | D1 | 0.54 | | Cyclopentene | Not Available | 2,900 | 0.2 | ND | D1 | 0.4 | | Dichlorodifluoromethane | Not Available | 10,000 | 0.2 | 0.63 | L,D1 | 0.4 | | Ethane | 180,000 | Simple Asphyxiant* | 0.5 | 190 | D1,T | 1 | | Ethylbenzene | 170 | 20,000 | 0.27 | 0.05 | J,D1 | 0.54 | | Ethylene | 270,000 | 500,000 | 0.5 | 1.3 | L,D1,T | 1 | | Lab Sample ID | 110398-0001 | | | | | | |--------------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | LOD
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | Isobutane | 2,040 | 8,000 | 0.23 | 12 | D1 | 0.46 | | Isopentane (2-methylbutane) | 1,300 | 1,200 | 0.27 | 4.7 | D1 | 0.54 | | Isoprene | 5 | 20 | 0.27 | ND | D1 | 0.54 | | Isopropylbenzene (cumene) | 100 | 500 | 0.24 | ND | D1 | 0.48 | | m & p-Xylene (as mixed isomers) | 80 | 1,700 | 0.27 | 0.29 | J,D1 | 0.54 | | m-Diethylbenzene | 70 | 460 | 0.27 | ND | D1 | 0.54 | | Methyl Chloride (chloromethane) | Not Available | 500 | 0.2 | 0.72 | L,D1 | 0.4 | | Methylcyclohexane | 150 | 4,000 | 0.26 | 1 | L,D1 | 0.52 | | Methylcyclopentane | 1,700 | 750 | 0.27 | 0.32 | J,D1 | 0.54 | | Methylene Chloride (dichloromethane) | 160,000 | 3,500 | 0.14 | 0.16 | J,D1 | 0.28 | | m-Ethyltoluene | 18 | 250 | 0.11 | ND | D1 | 0.22 | | n-Butane | 1,200,000 | 8,000 | 0.2 | 15 | D1 | 0.4 | | n-Decane | 620 | 1,750 | 0.27 | ND | D1 | 0.54 | | n-Heptane | 670 | 850 | 0.25 | 1.2 | L,D1 | 0.5 | | n-Hexane | 1,500 | 1,800 | 0.2 | 2.3 | D1 | 0.4 | | n-Nonane | 2,200 | 2,000 | 0.22 | 0.25 | J,D1 | 0.44 | | n-Octane | 1,700 | 750 | 0.19 | 0.52 | L,D1 | 0.38 | | n-Pentane | 1,400 | 1,200 | 0.27 | 3.8 | D1 | 0.54 | | n-Propylbenzene | 3.8 | 250 | 0.27 | ND | D1 | 0.54 | | n-Undecane | Not Available | 550 | 0.27 | ND | D1 | 0.54 | | o-Ethyltoluene | Not Available | 250 | 0.13 | ND | D1 | 0.26 | | o-Xylene | 380 | 1,700 | 0.27 | ND | D1 | 0.54 | | p-Diethylbenzene | 0.39 | 460 | 0.27 | ND | D1 | 0.54 | | p-Ethyltoluene | 8.3 | 250 | 0.16 | ND | D1 | 0.32 | | Propane | 1,500,000 | Simple Asphyxiant* | 0.5 | 51 | D1,T | 1 | Tony Walker et al. June 16, 2011 Page 11 of 13 | Lab Sample ID | 110398-0001 | | | | | | |-------------------------|-------------------------------|---|----------------------------|------------------------------------|--------|----------------------------| | Compound | Odor AMCV (ppb _v) | Short-Term Health
AMCV (ppb _v) | LOD
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | Propylene | 13,000 | Simple Asphyxiant* | 0.5 | 0.72 | J,D1,T | 1 | | Styrene | 25 | 5,100 | 0.27 | ND | D1 | 0.54 | | t-1,3-Dichloropropylene | Not Available | 10 | 0.2 | ND | D1 | 0.4 | | t-2-Butene | 2,100 | 15,000 | 0.18 | ND | D1 | 0.36 | | t-2-Hexene | Not Available | 500 | 0.27 | ND | D1 | 0.54 | | t-2-Pentene | Not Available | 2,600 | 0.27 | ND | D1 | 0.54 | | Tetrachloroethylene | 770 | 1,000 | 0.24 | 0.22 | J,D1 | 0.48 | | Toluene | 170 | 4,000 | 0.27 | 0.51 | J,D1 | 0.54 | | Trichloroethylene | 3,900 | 100 | 0.29 | ND | D1 | 0.58 | | Trichlorofluoromethane | 5,000 | 10,000 | 0.29 | 0.29 | J,D1 | 0.58 | | Vinyl Chloride | Not Available | 26,000 | 0.17 | ND | D1 | 0.34 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume. ND - Not detected. NQ - Concentration can not be quantified. LOD - Limit of detection. SDL - Sample Detection Limit (LOD adjusted for dilutions). INV - Invalid. - J Reported concentration is below SDL. - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. - M Result modified from previous result. - T Data was not confirmed by a confirmational analysis. Data is tentatively identified. - D1 Sample concentration was calculated using a dilution factor of 4.02. Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs) Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV. | compare short-term monitored value | Long-Term Health | | | | | |------------------------------------|---|--------------------------------------|---|--|--| | Compound | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health AMCV (ppb _v) | | | | 1,1,1-Trichloroethane | 940 | Cyclopentane | 120 | | | | 1,1,2,2-Tetrachloroethane | 1 | Cyclopentene | 290 | | | | 1,1,2-Trichloroethane | 10 | Dichlorodifluoromethane | 1,000 | | | | 1,1-Dichloroethane | 100 | Ethane | Simple Asphyxiant* | | | | 1,1-Dichloroethylene | 86 | Ethylbenzene | 450 | | | | 1,2,3-Trimethylbenzene | 25 | Ethylene** | 5,300 | | | | 1,2,4-Trimethylbenzene | 25 | Isobutane | 800 | | | | 1,2-Dibromoethane | 0.05 | Isopentane (2-methylbutane) | 120 | | | | 1,2-Dichloroethane | 1 | Isoprene | 2 | | | | 1,2-Dichloropropane | 10 | Isopropylbenzene (cumene) | 50 | | | | 1,3,5-Trimethylbenzene | 25 | m & p-Xylene (as mixed isomers) | 140 | | | | 1,3-Butadiene | 9.1 | m-Diethylbenzene | 46 | | | | 1-Butene | Not Available | Methyl Chloride (chloromethane) | 50 | | | | 1-Pentene | Not Available | Methylcyclohexane | 400 | | | | 2,2,4-Trimethylpentane | 75 | Methylcyclopentane | 75 | | | | 2,2-Dimethylbutane (Neohexane) | 100 | Methylene Chloride (dichloromethane) | 100 | | | | 2,3,4-Trimethylpentane | 75 | m-Ethyltoluene | 25 | | | | 2,3-Dimethylbutane | 99 | n-Butane | 800 | | | | 2,3-Dimethylpentane | 85 | n-Decane | 175 | | | | 2,4-Dimethylpentane | 85 | n-Heptane | 85 | | | | 2-Chloropentane (as chloroethane) | 19 | n-Hexane | 190 | | | | 2-Methyl-1-Pentene +1-Hexene | 50 | n-Nonane | 200 | | | | 2-Methyl-2-Butene | 50 | n-Octane | 75 | | | | Compound | Long-Term Health
AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |---------------------------------|--|-------------------------|--| | 2-Methylheptane | 75 | n-Pentane | 120 | | 2-Methylhexane | 75 | n-Propylbenzene | 25 | | 2-Methylpentane (Isohexane) | 100 | n-Undecane | 55 | | 3-Methyl-1-Butene | 800 | o-Ethyltoluene | 25 | | 3-Methylheptane | 75 | o-Xylene | 140 | | 3-Methylhexane | 75 | p-Diethylbenzene | 46 | | 3-Methylpentane | 100 | p-Ethyltoluene | 25 | | 4-Methyl-1-Pentene (as hexene) | 50 | Propane | Simple Asphyxiant* | | Acetylene | 2,500 | Propylene | Simple Asphyxiant* | | Benzene | 1.4 | Styrene | 110 | | Bromomethane (methyl bromide) | 3 | t-1,3-Dichloropropylene | 1 | | c-1,3-Dichloropropylene | 1 | t-2-Butene | Not Available | | c-2-Butene | Not Available | t-2-Hexene | 50 | | c-2-Hexene | 50 | t-2-Pentene | Not Available | | c-2-Pentene | Not Available | Tetrachloroethylene*** | 3.8 | | Carbon Tetrachloride | 2 | Toluene | 1,100 | | Chlorobenzene (phenyl chloride) | 10 | Trichloroethylene | 10 | | Chloroform (trichloromethane) | 2 | Trichlorofluoromethane | 1,000 | | Cyclohexane | 100 | Vinyl Chloride | 0.45 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ^{**}Long-term vegetation AMCV for Ethylene is 30 ppb. ^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.